SPRING 2025 MATH 540: QUIZ 12

Name:

1. Show that if a and b are positive integers, then the arithmetic progression $\{a, a + b, a + 2b, \ldots\}$ contains an arbitrary number of consecutive terms that are positive. (5 points)

Solution. Note that the general term of the sequence is a + bn, and no term in the sequence is equal to 1. Fix $k \ge 1$ and take n_1, n_2, \ldots, n_k , k consecutive terms in the sequence. We claim that for any $t \ge 1$, $tb + n_1, tb + n_2, \ldots, tb + n_k$ are also consecutive terms in the sequence. Suppose the claim is true. Set $t := n_1 \cdots n_k$. Then $tb + n_1$ is divisible by $n_1, tb + n_2$ is divisible by $n_2, \ldots, tb + n_k$ is divisible by n_k . Note that for each $i, tb + n_i = n_i(\frac{t}{n_i}b + 1)$, showing that $tb + n_i$ is not prime. So for arbitrary k, we have kconsecutive composite terms in the sequence.

For the claim, suppose $n_1 = a + hb$, $n_2 = a + (h + 1)b$, ..., $n_k = a + (h + k - 1)b$. Then,

$$tb + n_1 = tb + (a + hb) = a + (h + t)b$$

$$tb + n_2 = tb + (a + (h + 1)b) = a + (t + h + 1)b$$

$$\vdots$$

$$tb + n_k = tb + (a + (h + k - 1)b) = a + (t + h + k - 1)b,$$

which are k consecutive terms in the sequence.

2. Calculate $\Phi_{24}(x)$. (5 points)

Solution. We use the fact that $x^{24} - 1 = \Phi_1(x) \cdot \Phi_2(x) \cdot \Phi_3(x) \cdot \Phi_4(x) \cdot \Phi_6(x) \cdot \Phi_8(x) \cdot \Phi_{12}(x) \cdot \Phi_{24}(x)$. From class we have $\Phi_1(x) = x - 1$, $\Phi_2(x) = x + 1$, $\Phi_3(x) = x^2 + x + 1$, $\Phi_4(x) = x^2 + 1$, $\Phi_6(x) = x^2 - x + 1$. We use this to find $\Phi_{12}(x)$. We have

$$x^{12} - 1 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 + 1)(x^2 - x + 1)\Phi_{12}(x)$$

Solving for $\Phi_{12}(x)$, we get $\Phi_{12}(x) = x^4 - x^2 + 1$. We now have,

$$x^{24} - 1 = (x - 1)(x + 1)(x^{2} + x + 1)(x^{2} + 1)(x^{2} - x + 1)(x^{4} - x^{2} + 1)\Phi_{24}(x)$$

Solving for $\Phi_{24}(x)$, we get $\Phi_{12}(x) = x^8 - x^4 + 1$.